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RELATIONS AT A COMBINED CONCENTRATION DISCONTINUITY 

IN A GAS CONTAINING SOLID PARTICLES 

S. P. Kiselev and V. M. Fomin UDC 532.529+533.6.011 

A study is made of the flow of a mixture of gas and solid particles having discontinui- 
ties in the volume particle concentration m2 when the gas flows through the discontinuities 
(combined discontinuities). There is a difficulty in describing such flows in that the con- 
ditions for using the two-liquid model Z >> I are not obeyed at the discontinuities, where Z 
is the characteristic scale in the change in mean flow parameters. This difficulty has been 
avoided [i] by replacing the region of discontinuity by a surface of discontinuity. With 
slight changes, this idea has been reproduced in all subsequent studies on combined discon- 
tinuities [2-8]. The continuous changes in gas parameters over the thickness of the discon- 
tinuity (much greater than the distance between the gas molecules) is replaced by a discon- 
tinuity of the first kind. A consequence of this is a physically unjustified increase in the 
entropy at the discontinuity [6], i.e., [S] - [p]. The physically correct conditions at the 
discontinuity were first used in [9] for the interaction of a shock wave with a porous half- 
space and a porous coating. Here the relations at the discontinuity have been derived on the 
assumption that the entropy is conserved when the gas flows into the porous material together 
with a Bord shock scheme for flow from it. These concepts were developed in [4, i0], where 
the surface force was introduced at the surface of discontinuity in the porosity, which acts 
on the gas and whose magnitude is chosen from the condition for the occurrence of given flow 
states at such discontinuities, which enables one to avoid the above entropy paradox. Sim- 
ilar concepts were partially used in [7] for the two-liquid model, where a surface force was 
artificially introduced that acts on particles at the combined-discontinuity surface. 

Here we derive the relations at a combined discontinuity from the equations describing 
the flow of the gas at a discontinuity, which is an N-couple region, where N is the number of 
particles in the discontinuity. We calculate the surface force exerted by the gas on the par- 
ticles. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 112-119, March-April, 1984. Original article submitted January 20, 1983. 
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Consider the flow of a gas containing solid particles with a discontinuity in the vol- 
ume particle concentration. 

Definition i. By discontinuity in m= we understand a region with transverse dimension 
h of the order of the distance between particles I in which there is a considerable change in 
the volume concentration Am2 ~ m2; the motion is subsonic as regards the difference in the 
phase velocities, M < i, where M = luz -- u21/ao , and ao is the speed of sound in the gas. We 
take the surface of discontinuity as planar and direct the x axis perpendicular to it. The 
problem is to determine the gas parameters u~, p~x, p, and T (velocity, density, pressure, 
and temperature) on one side of the discontinuity from the known ones on the other side. 
Particles at the discontinuity are acted on by a surface force, which leads to changes in the 
speed of the discontinuity, the number of particles in the discontinuity region, and the par- 
ticle distribution in space. 

Definition 2. The speed of the discontinuity is given by 

=d+~ ~12 / =d +h/~" 

X d _ h / 2  �9 �9 [ ~ d - h / 2  

where xd is the coordinate of the center of the discontinuity (Fig. i), m2 and u2 are the vol- 
ume content and velocity of the particles, and <f> is the mean value in the section x. It 
will be shown below that the characteristic time for the displacement of a particle by Ax = 
d because of the surface force is T " / ( P 2 2 / P I ~ )  [d/(u~ -- D)] and, therefore, the Struhal 
number is Sh = /p:~/p22. As in most cases, the density of the gas is much less than that of 
the particles; we have Sh << i, so the gas motion in the discontinuity system may be taken 
as quasistationary [Ii]. 

We transfer to a frame of reference moving with velocity D and use the integral rela- 
tions of [3], which in our case take the form 

(z) 
puv.d6 = O, ~ Pnv'v~da = y p~d~, 

E E E 

p 2 

Pn " vdff. # Pn ( ~+U) vnd~ : 
E E 

The r e l a t i o n  b e t w e e n  t h e  c o o r d i n a t e s  i n  t h e  l a b o r a t o r y  s y s t e m  and t h e  d i s c o n t i n u i t y  s y s t e m  i s  
t 

Ddt, w h e r e  Z i s  a c o n t r o l  s u r f a c e ,  v = u~ --  D, D = D ~  and e i s  a u n i t  v e c t o r  X~ X + 
0 

d i r e c t e d  a l o n g  t h e  n o r m a l  t o  S. 

F o r  s i m p l i c i t y  we r e s t r i c t  o u r s e l v e s  t o  t h e  o n e - d i m e n s i o n a l  a p p r o x i m a t i o n  and p u t  m2 = 
0 on t h e  r i g h t  and m2 > 0 on t h e  l e f t .  We p l a c e  t h e  o r i g i n  a t  p o i n t  0 a s  shown i n  F i g .  l ,  
w h e r e  m2 = c o n s t  f o r  x < - - h / 2  and m2 = 0 f o r  x > h / 2 .  The g a s  p a r a m e t e r s  i n  t h e  s e c t i o n  x = 

. o 

x D "%"-~ , 
I ~ Lul l . .  - - a z / 2  
L_--'~------_ Jl = - 

Fig. 1 

"%/2 YI3 _,-I--, 
' -  - K  - I  

Fig. 2 
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--h/2 are denoted by f-, while those in the section x = +h/2 are denoted by f+. The region 
of discontinuity ~ is bounded by areas S perpendicular to the x axis and having coordinates 
x~ =--h/2 and x= = +h/2, and at the points of intersection of an area with a particle it is 
bounded by part of the surface of the intersected particle G, (Figs. 1 and 3). The gas 
stream lines will form the lateral surface. We choose S such that it intersects a suffi- 
ciently large number of particles in the section xl =--h/2. The discontinuity region is an 
N-coupled one. As the transverse dimension of the ~ region is Az >> l, while the longitudi- 
nal one is h ~ ~, the contribution to the integrals of (i) from particles intersecting the 
side surface can be neglected, while the stream lines are taken as parallel to the x axis. 
The condition (n.v) = 0 is obeyed at the surfaces of the particles, so the presence of N 
particles in ~ has any effect only in the calculation of the second integral in (i). We pro- 
ject the second equation of (i) on the x axis on the basis that 

p~ = - - p . n ,  v~ = v . n ,  p ~ . I x  = - - p n x ,  

to  g e t  
Pn vvndg = - -  .I pnJo, 

E 

SO 

t, P r pdS I+hl2 
sO S o S O 

# 

where S ~ is the area in the sections _+h/2 through which the gas flows with v n r 0. Formula 

(2) shows that the particles exert the force F ~ IPnx d~ on the gas, so the average 

force acting from one particle in the discontinuity is ]=-- (~Spnxd~]/N. This means 

that thediscontinuitymoveswithanaccelerationg=I/(~p22)',andthattheterm ~ f PllgaV 
Vl l  

must be added to  the  second  e q u a t i o n  i n  (1) on t r a n s f e r r i n g  to  the  d i s c o n t i n u i t y  sy s t em.  As 

the  number of  p a r t i c l e s  i n  the  d i s c o n t i n u i t y  i s  N = nV, w h i l e  VI~ = mlV~, we g e t  _f pugdV~ 
V11 

P11ml ~ O [pnd~ where ma = ~nd3/6. This shows that the contribution from the inertial term 
~22 m2 N 

can be n e g l e c t e d  f o r  p ~ / p a 2  << 1 and m2 n o t  too  s m a l l .  We t r a n s f e r  f rom (2) to  a r e l a t i o n  
be tween  the  a v e r a g e  c h a r a c t e r i s t i c s  o f  the  gas  f low i n  the  s e c t i o n s  _+h/2. The a v e r a g e  v a l u e  
of  t he  gas p a r a m e t e r  f a t  p o i n t  x i s  d e f i n e d  by 

</> = s-T / a s ,  
so 

where S~ is the part of S occupied by the gas. We use the equality of the mean surface and 
mean volume quantities [8] and multiply (2) by I/S and use 

to get 

i s  ~ ]dS = ml <1>, 
s~ 

(<911v2> + <P>)I+hl-~- ml (<PnV2> Jr- <p>)I-h/~ -- i ~!pnxdg.  (3) 
S 
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We transform the right side of this equation to 

pnxd(r = ~- X S pnxda' 
yO ,z 0 0 

where ~ is summation over particles whose centers have coordinates (x ~ yO, z o) and lie 
yO,zO 

in the volume bounded by the S planes passing through the points x ~ and x ~ + dx ~ while ~ 
~o 

is summation over these volumes. The value of dx ~ is chosen from the conditions dx ~ << h, 
N~ ~ >> I, where N~ ~ is the number of particles whose centers lie in the volume dV ~ = 
Sdx ~ Clearly, if the first condition is obeyed and S is chosen appropriately, the second 
condition can also be satisfied. As one can transfer from integration over the surface of a 
particle to integration with respect to 9 and ~, and as the integration with respect to ~ is 
with limits 0<<~2~ while the limits for e are dependent only on x ~ (Fig. 2), we have 

l--!'Z X pn~dq="~-X d~nx Z P ,  
S xo yO, 0 " x 0 yO,zO 

a n d  t h e n  a s  d~ = r 2 s in  OdOd(p we h a v e  

I X ydonx Z P(x~176176 O,(P) l-J--'~. ~dOr2sinO2~N~176 
X 0 0 NO,zO X U G 

(4) 

2~ 

i  ;p(x0 y0 z0 0 
where p ( J =  2nN~(xO) v ,z o is the mean pressure at the surface of a particle at 

the point x = x ~ + r cos O. We represent the particle concentration in the discontinuity as 
he(X~ where n is the particle concentration at x ~ < --h/2 + d/2, ~(x ~ = i for x ~ <--h/2 + 
d/2, and r ~ = 0 at x ~ > h/2 -- d/2, which gives N~ ~ = Snr176 ~ We replace s--ummation 
with respect to x ~ by integration on the basis that nx =--cos 8 to get (Fig. 2) that 

- -h/2+d/2 ~ +h/2- -d /2  

I ~ !pnxd~ = y dxOn(i ) (x o) y2~r2pa (x o + g,)Cos 0 s in  OdO + I dx~176 2~r2p~ (x~ ') cos 0 s in  OdO, s 
- -h/2--d/2 0 - -h/2+d/2 0 

(5) 

w h e r e  c o s  0 = y ' / r ,  c o s  ~ = - x ' / r ,  x I = x ~ + h / 2 .  H e r e  t h e  f i r s t  i n t e g r a l  ( - - h / 2  . d / 2  < 
x ~ <--h/2 + d/2) incorporates particles intersecting the area S in the section x =--h/2~ 
white the second incorporates those lying in that region. It can be shown that the integrals 
with respect to e become 

%b 1 

y 2gr2p ~ (x ~ + y')cos 0 sin OdO = nd2 �9 -~- p~ (x ~ + zr) zdz, 

- ~ - - - ~  j 

1 

2~r2pa (x  ~ + g ' )  eosOMnOdO = --g- p"(x ~ + zr)zdz. 
0 --1 

In (5) we make the change of variable y = (x ~ + h/2)/(d/2), cos ~ = --y, x~ = yd/2 -- h/2 
and use the definition m2- = ~nd3/6 to ~et 

1 1 (h/2--d/2) 1 \ 

Sl pnxd(r = -~-3 m~ dyO (x ~ (y)) zp~ x o (y) + dz + --if- dx~ (x ~ p~ (x ~ + zd/2) zdz). 
~ (--h/2+d/~) --1 (6 )  --y 
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Formulas (3) and (6) give the required relation at the discontinuity. 

LEMMA. Relations (3) and (6) at the discontinuity are independent of the choice of the 
control surface Z. 

To prove this we take the control surface in the section x =--h/2 in such a way that 
the particles intersected by the area S lie entirely in ~. Outside the particles, this sur- 
face coincides with that previously selected, while at the surface of the particles GI it is 
replaced by G2 (Fig. 3). As v n = 0 at the surface of a particle, the change in the surface 
of integration affects only the calculation of the integral over the surface of a boundary 
particle fpnxdo , which in that case has the form 

I = Jpn~da + p n'~d~, 

where the second integral is taken over the entire particle surface (Fig. 3). As s § 0, the 
continuity of p means that the pressures at the surface of the particle and at the correspond- 
ing point on G2 are identical, while n' x =--nx, so 

go G 1 G 2 

whence I= )pnJ~, which proves the above assertion. It is clear that (3) and (6) are inde- 
G 1 

pendent of the choice of the point x through which the control surface S passes because of 
the homogeneity in the mean gas and particle parameters. Let the control surface be taken in 
the section --h'/2, h' << Az (Fig. i). As the flow is homogeneous, m1<pllv 2 + P>l-h/2 = m1" 

<P11 v= + P> [-h~/2, so it is necessary to show that the ~ S pn~d~ over the regions bounded 
Na 

by ZI and l= coincide. We represent the integral over Z= as a sum of integrals over El and 
the surface D~ (dashed line in Fig. i), while the integral over D~ is represented in the form 
of (4) : 

, ~ ! p n x d ~ = I i + I 2 + I a ,  1 1 = ~  SdOB(O,x~ 
x~ G 1 

4 = E S (o, = E S eOB (o, 
4 ", o0 

where 

B ( 0 ,  x ~ = 2 g r  ~' s i n  OnxN~176 ~ (x", 0), 
- -  h / 2  - -  r ~ x~ ~ - -  h / 2  -b r ,  - -  h'  / 2  - -  r ~ x ~  ~ - -  h'  /2  + r ,  

- -  h ' / 2  + r ~ x ~ - -  h / 2 - - r .  

Here there is summation over particles intersecting S in the section--h/2 in ~ , while in 
xO 
1 

there is summation over particles intersecting S at x = --h'/2, and in ~ there is sum- 
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mation over particles lying entirely in D~. As the flow is homogeneous, we have for-~h'/2 
x ~ -h/2 that 

pa = <p> + ApZ, Ap~(O) = ApZ(~ _ 0), 

<p> = const, N~ ~ = const. 

As nx = --cos 0, we get for the internal particles that 

(i ) Is = - -  ~ N~ 2 sin 0 cos OdO <p> + sin 0 cos OdOAp ~ (0) 
x 0 \ 0 0 

= 0  

(the second term is zero because it is the integral of an odd function), and 

I i = - - 2 n r 2 N ~  

12 ~ _ 2griN o ~ J" pa (0) sin 0 cos OdO: 
=o o 

I n  I a ,  we r e p l a c e  summat ion  w i t h  r e s p e c t  to  x~  by  x~ ( t h i s  i s  p o s s i b l e  b e c a u s e  o f  t h e  homo- 
g e n e i t y )  and g e t  

I z + I s = - - 2 n r 2 N ~  < >ysin0cos0d0T~sin0 cosOAp~ . 
Xl 0 0 0 

Then, similarly, la = 0 and we get I~ + 12 = 0, which proves the above assertion. For- 
mulas (3) and (6) can be extended directly to the case m2 > 0 for x ~ h/2, and then (3) takes 
the form 

i ~ S p n x d a .  (7) [mz <91zv ~ + P>] = - -  -~-., o 

If we add to the right side of (6) a contribution from the particles intersecting the area S 
in the section +h/2 and perform transformations analogous to those for particles intersecting 
S at x =--h/2, we get 

2 + - s  

S pn=da = - ~  m2 d!t .t' p~ x~ (y) + zdz + (8) 
~i U --y 

(h d) 
~-~ a z - w  

# dx~ ~ ~ p ~ ( x ~  ~---~)zdz-{-• S dw y p ~ 1 7 6  z---~)zdz), 
{ h d ,  --, - ,  -1 ~J,-~+~ 

where 

O(x ~ = 1, x ~ <~ - h / 2  + d/2, O(x ~ = x, x ~ >~ h/2 - d/2' 

• = const, • =/= 1, m + = • m~" 4= O, 

w = (x ~ - -  h/2)/(d/2), x~ = h/2 -~ wd/2. 

We use identical transformations to represent (7) and (8) as 

(h+d)/2 
3 -- y (I) (X ~ dx ~ X <mzpllV 2 + p>+ - -  <mz911 v~ -? p>- = --d-m2 

--(h+d)/2 

i l i [ ;  i ] 3 ~ ( a p " ) -  m + z X zp ~ x ~  dz - - - -U dy m-s d z +  Apo)+dz . 
--I --I --Y 

(9) 
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As N (the connectedness of ~) does not influence the calculation of the energy and mass in- 
tegrals in (I), we neglect the work of the frictional force to get 

[<rn~o~t~>] = O, H + - - y / ]  = O, (10)  

where [~] =~+--~-; v=u1--D; and H is the specific gas enthalpy. Then (9) and (I0) must 
be supplemented with the equation of state for the gas p = p(p~1, T~), H = cpT1. 

We consider a particular case of (8) and (i0) when 

h = d ,  D = O ,  <p l lu ]>=<Pl l><Ul>  2, 

{ t ,  x ~  
p z = c o n s t ,  •  +, (9(x ~  • x ~  

From (8) we get 

-- ~- pnxdc~ = p~ [ml], 

and then from (i0) we have 

[(<P> + <Pn'> <u1> ~) ml] = pO[ ml]. (ii) 

Expression (Ii) coincides with the formula given without derivation in [4], which dealt with 
the flow of a gas in a porous medium having surfaces of discontinuity in the porosity. 

In [7], the following equations were derived for a surface of discontinuity from the 
two-liquid model: 

[pllml(~l - -  D)]  = 0, [P + pl lml(ul  - -  D) ~ ] = 0, (12)  
[H + (u 1 - 0 ) 2 / 2 1  = 0 ,  Fs = [m2p], 

where F s is the surface force acting on a particle at the discontinuity. If we neglect the 
pulsation terms in (9) and (i0), the first and third equations in (12) derived in [7] coincide 
with (I0) but Eq. (9) differs from the second equation in (12) in the presence of a right 
side. We take Ap ~ as introduced above as being the same as for the flow around a single par- 
ticle [ii], Ap ~ = (i/2)p:1(x~ ~ -- D)2(I -- (9/4)sin = e), while the pressure over the in- 
terval-~h/2 < x < h/2 is interpolated from the formula <p> = (p+-- p-)(x/h) + (p+ + p-)/2. 
We use (9) to get 

m~ _ 
[mien (ul - D) 2 + p] = m; Ip] + ~ p11 [mll (u7 - D)2/2. (13) 

It can be shown that the two terms in (13) are the same in sign and order. Let u-: --D > 0, 
[ml] > 0; this case corresponds to the expansion of a current tube, which leads to an in- 
crease in p for a flow with M < i [ii], so [p] > 0. The second assertion follows from the 
Bernoulli integral, which is conserved along the current tube. If the combined discontinuity 
is important, the condition [m2] ~ m2 - 1 is obeyed, and then it is necessary to incorporate 
the right side in (13). From (13) we get an estimate for the surface force in terms of the 
mean gas parameters in the form F ~ ~ [ml]p11(ul -- D) 2, which gives the acceleration of a par- 
ticle at the discontinuity as g = --F~ ~ where h = d, M ~ = P22m2d, and the characteristic 

I 2m~p2~ 
time for the displacement of a particle by Ax = d is ~ V ~2]~(~I DJ' ' SO the above 

hypotheses are obeyed. 

In conclusion we note that, to determine pO, it is necessary to use experimental data on 
empirical relations such as those given in [4]. 
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AIR SHOCK HURLING OF AN UNFASTENED SOLID NEAR A FLAT OBSTACLE 

V. A. Kotlyarevskii UDC 621.01:531.66 

A formulation is given of the problem of a shock hurling a body near a solid flat ob- 
stacle. It is considered that the condition of a long shock interacting with the body [i] is 
satisfied and the force pattern is representable by two phases, diffraction and quasistation- 
ary streamlining. Initial conditions for the origination of different modes of motion, as 
well as the transient conditions associated with a variable mode during shock interaction 
with the obstacle, are considered for two versions of the diffraction load representation. 
The solution~is obtained by a numerical method. 

i. A body is considered that has a plane ~ of material symmetry in which forces from a 
shock and the reactions of unilateral constraints act, which corresponds to the plane-parallel 
motion of the body with variable (from 1 to 3) degrees of freedom. Let the plane ~ coincide 
with the inertial XOY coordinate system with origin at the body center of mass, which is sym- 
metric relative to Y and with two points of contact with the obstacle for t < 0 (Fig. i). 
The shock is propagated along the X axis and is continuous with the body at t = 0. The un- 
perturbed wave parameters are associated with the point X = 0. 

It is assumed that the system of forces in the diffraction phase is independent of the 
body displacements, which are not substantial, while it is determined inthe streamlining 
phase by stationary aerodynamics relationships in which the time t is a parameter [i]. Col- 
lision of the body support with the obstacle is considered absolutely inelastic while the re- 
sistance to displacement is subject to Coulomb's law. Four modes of motion are possible: i) 
(E = i) rotation in combination with slip along the obstacle; 2) (E = 2) rotation around a 
fixed axis; 3) (E = 3) slip; 4) (E = 4) flight without contact with the obstacle. Mode alter- 
nation is allowable during the motion. The criterion E = 0 is introduced for the state of 
rest. 

2. The load in the diffraction phase can be approximated by an instantaneous impulse or 
function of time, which is important to estimation of the body acceleration during its most 
intensive loading. It is considered that the impulses SW, SA, and the moment of the impulse 
MS are known along the X, Y axes. We then write the approximate expressions for the frontal 
force W, the lift force A, and the moment Mo for the second case. 
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